xperiments and Discussion

Results 000000000 pplication

Conclusion

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data European Space Weather Week ESWW

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW

Toulouse, France

20-24 November, 2023

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Toulouse, France

Introduction ●0	Experiments and Discussion	Results 000000000	Application 00000	Conclusion 000

1 Introduction

2 The dataset

3 Experiments and Discussion

4 Results

6 Application

6 Conclusion

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
0•	00		000000000	00000	000
Goal of the	e project				

Machine Learning Goal

The goal of this project is to utilize generative models, specifically diffusion models, to produce images of the Sun with a specific amount of activity present.

Why do we want to do this analysis?

Generate the rarest events (e.g., *M*- or *X*-flares) to solve the problem of the unbalanced dataset, being able to investigate these phenomena more extensively with more data.

The dataset ●0	Experiments and Discussion	Results 000000000	Application 00000	Conclusion 000

Introduction

2 The dataset

3 Experiments and Discussion

4 Results

6 Application

6 Conclusion

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

	The dataset ○●	Experiments and Discussion	Results 000000000	Application 00000	Conclusion
Data sour	ces				

We used three data sources:

- SDOMLv2: a subset of the SDO data already prepared for machine learning studies (Galvez, Richard et al 2019),
- GOES X-Ray Sensor (XRS): soft X-ray measurements in the XRSB (1-8 Å) band,
- Heliophysics Events Knowledgebase (HEK): peak time and GOES labels of flaring events.

	Experiments and Discussion ●00	Results 000000000	Application 00000	Conclusion 000

Introduction

2 The dataset

③ Experiments and Discussion

4 Results

6 Application

6 Conclusion

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00	0●0	000000000	00000	000
What are	the DDPM	ls?			

Adapted from Ho et al. 2020

三日 のへの

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Toulouse, France

We use the following setup:

- Image resolution: 64×64,
- Number of Epochs: 500 (for each model),
- Batch size = 12.

We perform the following distinct experiments:

- Discrete labels: A, B, C, M and X,
- Continous labels: X-ray values,
- Discrete labels + ceVAE embeddings

We compare the results with the following baseline model:

• ceVAE (Giger M., 2022)

	Experiments and Discussion	Results ●00000000	Application 00000	Conclusion 000

Introduction

- 2 The dataset
- 3 Experiments and Discussion

4 Results

6 Application

6 Conclusion

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		0●0000000	00000	000
Metrics					

To evaluate the best model we used the following metrics:

- **Cluster Metrics** (Hackstein et al., 2023): determine if the generated distribution is similar to the true distribution. The cluster metrics can be divided into:
 - 1 Cluster Error (CE),

Oluster Distance (CD),

- S Cluster Standard Deviation (CS).
- **FID** (Heusel et al., 2017): determine the image quality level and the completeness of the generated distribution. The FID is computed using the following encoders:

• CLIP (Alec Radford et al., 2021)

• **F1 score**: check whether the generated image of a particular class (e.g. X) is similar to a true image of that class.

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		00●000000	00000	000
Metric Re	sults				

Metric	ceVAE	Discrete	Continous	cevae_emb
CE GEN \downarrow	7.948 ± 0.914	0.130 ± 0.036	1.503 ± 0.147	0.207 ± 0.036
CD GEN \downarrow	2.206 ± 0.009	0.921 ± 0.004	0.934 ± 0.002	0.838 ± 0.005
CS GEN \downarrow	3.239 ± 0.009	1.211 ± 0.004	1.098 ± 0.002	1.480 ± 0.005
FID CLIP \downarrow	5.05	0.122	0.057	0.39
F1 score ↑		0.7	0.34	0.6
Precision ↑		0.73	0.35	0.6
Recall ↑		0.74	0.37	0.7

The benchmark values for the cluster metrics are:

- Cluster Error (CE): 0.002,
- Cluster Distance (CD): 1.001,
- Cluster Standard Deviation (CS): 0.998.

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		000●00000	00000	000
А					

Toulouse, France

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

l2 / 25

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		0000●0000	00000	000
В					

Toulouse, France

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Introduction	The dataset 00	Experiments and Discussion	Results 00000●000	Application 00000	Conclusion
C					

Toulouse, France

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Introduction 00	The dataset 00	Experiments and Discussion	Results 000000●00	Application 00000	Conclusion
М					

Toulouse, France

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		0000000●0	00000	000
Х					

Toulouse, France

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		00000000	00000	000
True X im	ages				

Toulouse, France

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

	Experiments and Discussion	Results 000000000	Application ●0000	Conclusion 000

Introduction

2 The dataset

3 Experiments and Discussion

4 Results

6 Conclusion

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		000000000	0●000	000
Application	า				

Can we use these generated images to train a classifier and increase the accuracy?

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Introduction 00	The dataset 00	Experiments and Discussion	Results 000000000	Application	Conclusion 000
Application	า				

What do we do?

We train a DelT (Touvron et al 2021) model for supervised classification with and without the addition of generated data to see if this helps the increase of the classification accuracy.

- We train a DelT (Touvron et al 2021) model for supervised classification without any fine tuning because we want to test the impact of the added images only,
- This is not yet flare prediction.

Introduction	The dataset	Experiments and Discussion	Results	Application	Conclusion
00	00		000000000	00000	000
	<u> </u>				

Accuracy of lower represented classes

A class

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW		Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDC	D/AIA Data	

Introduction 00	The dataset	Experiments and Discussion	Results 000000000	Application 0000●	Conclusion 000
Compariso	n				

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

	Experiments and Discussion	Results 000000000	Application 00000	Conclusion ●00

Introduction

- 2 The dataset
- 3 Experiments and Discussion
- 4 Results
- 6 Application

6 Conclusion

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Introduction 00	The dataset	Experiments and Discussion	Results 000000000	Application 00000	Conclusion ○●○
Conclusion					

- The best model to generate SDO/AIA images is the model guided with the discrete GOES labels
- It is possible to control the level of activity on top of the sun thanks to the labelling system that we adopted,
- It is possible to apply the generated images to manage the unbalanced dataset in a classifier and increase the accuracy per class,
- As future work, we would like to test it on other deep learning tasks (e.g., obtain the magnetograms of the generated images and increase the image resolution and build a solar flare predictor on full disk images),
- The paper is in peer review.

	Experiments and Discussion	Results 000000000	Application 00000	Conclusion

Time for Questions!

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Generated Images

What are the DDPMs?

Diffusion Probabilistic models are very popular nowadays and we can summarize their usage into the following bullet points:

• Forward process or noising process (Ho et al., 2020):

$$q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1}), \ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathcal{I})$$
(1)

• Reverse process or denoising (Ho et al., 2020):

$$p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
(2)

• Classifier Free Guidance (Ho Salimans, 2022)

$$\tilde{\epsilon_{\theta}}(z,c) = \epsilon_{\theta}(z,c) + w \cdot (\epsilon_{\theta}(z,c) - \epsilon_{\theta}(z))$$
(3)

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Data Preparation

Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data

Toulouse, France

The modern classification system for solar flares uses the letters A, B, C, M, or X, according to the peak flux in watts per square metre (W/m2) of soft X-rays:

- A: $< 10^{-7}$
- B: 10⁻⁷ -10⁻⁶
- C: 10⁻⁶ -10⁻⁵
- M: 10⁻⁵ -10⁻⁴
- $X: > 10^{-4}$

Francesco Pio Ramunno, André Csillaghy Fa	chhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denois	ng Diffusion Probabilistic Models on SDO/AIA Data	

Distribution of the images per GOES class

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Classifier Free Guidance (CFG)

Credits: Outlier

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Classifier Free Guidance (CFG)

- Guide the diffusion model with labels in order to be able to produce an image with a determined label,
- The idea is that you train it both unconditioned and conditioned and then interpolate between the two giving a weight to the conditioning in a way that you can direct the production towards that particular label space,
- The most important hyper-parameters are the:
 - 1) $\rho_c = \text{probability of training with labels,}$
 - $\geq w =$ the CFG scale, the weight for the interpolation.

$$\tilde{\epsilon}_{\theta}(z,c) = \epsilon_{\theta}(z,c) + w \cdot (\epsilon_{\theta}(z,c) - \epsilon_{\theta}(z))$$
 (4)

 Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW
 Toulouse, France

 Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data
 32 / 25

Unet

Cluster Metrics

Cluster Error:

0

$$\epsilon = \frac{1}{K} \sum_{c=1}^{K} \frac{(\hat{n}_c - n_c)^2}{n_c^2}$$
(5)

We count the number of samples \hat{n}_c in each of K clusters and compute the difference to the target n_c . This metric measures whether the interesting regions in feature space, i. e. the clusters, are populated with the same number of samples as in the target distribution. A value of 0 indicates a perfect match. Larger values indicate deviation from the target, i. e. over-and underproduction of some type.

 Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW
 Toulouse, France

 Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data
 34 / 25

Cluster Metrics

Cluster Distance:

0

$$D = \frac{1}{d} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \hat{d}_i^2}$$
(6)

We compute the distance \hat{d}_i to the corresponding cluster center for each of N samples. Then, D is the normalized root-mean-square (RMS) of these distances. This metric measures whether the samples populate the correct regions in feature space with sufficient diversity. Values larger than 1 indicate that the sample contains images outside the target distribution.

Cluster Metrics

• Cluster Std:

$S = \frac{1}{S_{target}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{d}_i - d \cdot D)^2}$ (7)

For the distances to the cluster center \hat{d}_i , we further compute S as standard deviation from D.

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

FID

FID: FID(x, g) = ||μ_x - μ_g||² + Tr(Σ_x + Σ_g - 2(Σ_xΣ_g)^(1/2)), F1 score: F₁ = ^{2×Precision×Recall}/_{Precision+Recall} Precision and Recall: P = ^{TP}/_{TP+FP} R = ^{TP}/_{TP+FN}

 Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW
 Toulouse, France

 Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data
 37 / 25

t-SNE ceVAE

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	

Low level activity 128x128

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data Toulouse, France

Medium level activity 128×128

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data Toulouse, France

High level activity 128x128

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data Toulouse, France

Std A

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO/AIA Data	42 / 25

Std B

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SD	O/AIA Data 43 / 25

Std C

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDO	O/AIA Data 44 / 25

Std M

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW		Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SD	O/AIA Data	

Std X

Francesco Pio Ramunno, André Csillaghy Fachhochschule Nordwestschweiz FHNW	Toulouse, France
Solar Synthetic Imaging: Introducing Denoising Diffusion Probabilistic Models on SDC	D/AIA Data 46 / 25