Results 0000000

Enhancing Resolution of Solar Magnetograms: A Latent Diffusion Model Approach American Geophysical Union (AGU)

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Washington D.C., USA

9-13 December, 2024

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Goal of the project

Machine Learning Goal

Create a deep learning algorithm to perform a x4 spatial super-resolution (SR) and compare it with existing techniques.

Why do we want to do this analysis?

Apply the SR algorithm to MDI images and increase their spatial resolution from 2"/pixel to 0.5"/pixel matching the HMI resolution.

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

1 The dataset

2 Model choice and setup

Data sources

- Data from HMI/SDO and MDI/SOHO instruments; simultaneous operation from May 2010 to April 2011 yielded 4126 data pairs,
- Downscaling HMI images (4096 \times 4096 \rightarrow 1024 \times 1024) (2013–2019) achieves MDI-equivalent 2"/pixel resolution, resulting in 43,912 paired images,
- Image values constrained to \pm 3000 G and normalized to a range of -1 to 1,

The dataset

- **2** Model choice and setup
- 8 Results

Key points

- Train on HMI-data only where we create a MDI-equivalent 2"/pixel resolution image by averaging every 4 pixels of the HMI data,
- Finetune with the LoRA technique on the MDI/HMI paired dataset from May 2010 to April 2011
- After evaluation use the Fourier analysis to determine which model is really predicting features smaller than 2"/pixel.

Inference algorithm

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

The dataset

2 Model choice and setup

Results 000000

Input and Target

(a) Ground Truth

(b) Input

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Table Results

Metric	LDM RES (Ours)	Enhance (Díaz Baso &	Progressive (Rahman et al.
		Asensio Ramos 2018)	2020)
PSNR ↑	29.23 ± 8	30.02 ± 9	29.71 ± 8
SSIM	0.8 ± 0.05	0.9 ± 0.03	0.8 ± 0.04
LPIPS↓	0.08 ± 0.03	0.16 ± 0.04	0.16 ± 0.04
FID↓	0.04 ± 0.01	0.7 ± 0.2	2.3 ± 0.3
Unsigned Magnetic Flux (%)	18 ± 13	27.5 ± 26.7	28.5 ± 15.0
AR Size (%)	25 ± 18	35 ± 69	36 ± 38

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Results 000●000

Visual Inspection

(a) Ground Truth

(b) Best LDM model

(c) Best classic model

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Fourier Analysis

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Fourier Analysis

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Summary

- We propose a novel method based on Latent Diffusion Models (LDM) to achieve super-resolution for solar magnetograms, enhancing MDI data from 2"/pixel to match HMI's 0.5"/pixel resolution,
- Our LDM approach outperforms deterministic models (e.g., Enhance and Progressive) in perceptual metrics like LPIPS and FID, demonstrating better detail preservation and generalizability with minimal fine-tuning on MDI/HMI pairs.
- The stochastic nature of LDM allows the generation of uncertainty maps, highlighting prediction challenges, and enabling reliable super-resolution of features smaller than 2", while maintaining larger-scale features.

Diffusion Probabilistic models are very popular nowadays and we can summarize their usage into the following bullet points:

• Forward process or noising process (Ho et al., 2020):

$$q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1}), \ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathcal{I})$$
(1)

Reverse process or denoising (Ho et al., 2020):

$$p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
(2)

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Palette-like approach

 To apply the Denoising Diffusion Probabilistic Models for Image-to-Image translation we applied the Palette approach (Chitwan Saharia et al 2021),

• Given a set of paired data (x_i, y_i) , where:

- 1 x_i : input image,
- \bigcirc y_i : target image,
- Training step: we noise the target image with a random number of timesteps t, we concatenate the target image and the input image channel-wise, pass through the model and we predict the noise that we added on the target image.

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Training algorithm

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch

Metrics

• FID:

1
$$FID(x,g) = ||\mu_x - \mu_g||^2 + Tr(\Sigma_x + \Sigma_g - 2(\Sigma_x \Sigma_g)^{(1/2)}),$$

• PSNR:

$$\bigcirc \mathsf{PSNR} = 10 \cdot \log_{10} \left(\frac{\mathsf{MAX}^2}{\mathsf{MSE}} \right)$$

SSIM:

1 SSIM
$$(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

• LPIPS: L2 Norm in a VGG latent space.

F.P. Ramunno, P. Massa, V. Kinakh, B. Panos, A. Csillaghy, S. Voloshynovskiy FHNW - francesco.ramunno@fhnw.ch